Filial mistletoes: the functional morphology of moss sporophytes.

نویسنده

  • David Haig
چکیده

BACKGROUND A moss sporophyte inherits a haploid set of genes from the maternal gametophyte to which it is attached and another haploid set of genes from a paternal gametophyte. Evolutionary conflict is expected between genes of maternal and paternal origin that will be expressed as adaptations of sporophytes to extract additional resources from maternal gametophytes and adaptations of maternal gametophytes to restrain sporophytic demands. INTERPRETATION The seta and stomata of peristomate mosses are interpreted as sporophytic devices for increasing nutrient transfer. The seta connects the foot, where nutrients are absorbed, to the developing capsule, where nutrients are needed for sporogenesis. Its elongation lifts stomata of the apophysis above the boundary layer, into the zone of turbulent air, thereby increasing the transpirational pull that draws nutrients across the haustorial foot. The calyptra is interpreted as a gametophytic device to reduce sporophytic demands. The calyptra fits tightly over the intercalary meristem of the sporophytic apex and prevents lateral expansion of the meristem. While intact, the calyptra delays the onset of transpiration. PREDICTIONS Nutrient transfer across the foot, stomatal number and stomatal aperture are predicted to be particular arenas of conflict between sporophytes and maternal gametophytes, and between maternal and paternal genomes of sporophytes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Auxin regulation of axial growth in bryophyte sporophytes: its potential significance for the evolution of early land plants.

To identify developmental mechanisms that might have been involved in the evolution of axial sporophytes in early land plants, we examined the effects of auxin-regulatory compounds in the sporophytes of the hornwort Phaeoceros personii, the liverwort Pellia epiphylla, and the moss Polytrichum ohioense, members of the three divisions of extant bryophytes. The altered growth of isolated young spo...

متن کامل

Dehydration protection provided by a maternal cuticle improves offspring fitness in the moss Funaria hygrometrica.

BACKGROUND AND AIMS In bryophytes the sporophyte offspring are in contact with, nourished from, and partially surrounded by the maternal gametophyte throughout their lifespan. During early development, the moss sporophyte is covered by the calyptra, a cap of maternal gametophyte tissue that has a multilayered cuticle. In this study the effects on sporophyte offspring fitness of removing the mat...

متن کامل

The MADS-domain protein PPM2 preferentially occurs in gametangia and sporophytes of the moss Physcomitrella patens.

To date, the function of MADS-domain transcription factors in non-seed plants remains largely elusive, although a number of genes have been isolated and characterized from a variety of species. In our study we analyzed PPM2, a classical MIKC-type MADS-box gene from the moss Physcomitrella patens, taking advantage of the unique technical properties Physcomitrella offers in terms of efficient hom...

متن کامل

PpASCL, the Physcomitrella patens Anther-Specific Chalcone Synthase-Like Enzyme Implicated in Sporopollenin Biosynthesis, Is Needed for Integrity of the Moss Spore Wall and Spore Viability

Sporopollenin is the main constituent of the exine layer of spore and pollen walls. The anther-specific chalcone synthase-like (ASCL) enzyme of Physcomitrella patens, PpASCL, has previously been implicated in the biosynthesis of sporopollenin, the main constituent of exine and perine, the two outermost layers of the moss spore cell wall. We made targeted knockouts of the corresponding gene, PpA...

متن کامل

A global analysis of water and nitrogen relationships between mistletoes and their hosts: broadscale tests of old and enduring hypotheses

1. Mistletoes use far more water per unit carbon fixed during photosynthesis than their hosts (i.e. they have lower ‘water use efficiency’, WUE). The widely cited ‘nitrogen-parasitism hypothesis’ posits that N is the most limiting resource for mistletoes and that they use their faster transpiration rates to acquire sufficient N from the host xylem. In a rather different context, the ‘mimicry hy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Annals of botany

دوره 111 3  شماره 

صفحات  -

تاریخ انتشار 2013